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Genomic Evaluation of Average Daily Gain Traits in a 
Mixture of Arian Line and Urmia Iranian Native Chickens 

H. Asadollahi1, S. Ansari Mahyari1*,  R. Vaez Torshizi2,  H. Emrani3, and A. Ehsani2                               

ABSTRACT 

The aims of this investigation were to compare the accuracy and bias of prediction of 
Estimated Breeding Values (EBV) for Average Daily Gain (ADG) at 2-4 weeks old by 
employing pedigree-based BLUP and single-step Genomic BLUP (ssGBLUP) techniques. 
Additionally, the study aimed to identify the optimal minor allele frequencies (MAF) 
threshold for pre-selecting SNPs for genetic prediction. The present investigation utilized 
a total of 488 F2 broiler chickens, which were derived from the crossbreeding of fast-
growing Arian chickens and slow-growing native chickens from Urmia, Iran. These 
chickens were between 2-4 weeks old at the time of the study. Samples were genotyped 
using the Illumina 60K chicken Beadchip. In order to examine the impact of MAF on 
prediction accuracy, a total of 48,379 quality-controlled SNPs were categorized into five 
subgroups based on their MAF values: 0.05-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5. The 
findings substantiated the dominance of ssGBLUP over conventional BLUP techniques. 
The average accuracy of GP improved by 1.96, 3.87, and 2.12% using ssGBLUP 
compared to BLUP method for ADG at 2-4 weeks of age, respectively. Using a specific 
MAF bin and a subset of SNPs based on age group significantly enhanced the accuracy of 
genomic prediction for ADG traits. Current results highlighted that the pre-selection of 
SNPs based on allele frequency may provide a reasonable compromise between accuracy 
of results, number of independent variables to be considered and computing 
requirements. 

Keywords: BLUP, Estimated breeding value, Minor allele frequencies, SNP, ssGBLUP. 

INTRODUCTION 

The breeding program faces a significant 
constraint in the form of uncertainty 
surrounding the actual genetic value of 
breeding animals. Consequently, 
investments in breeding programs are 
frequently directed towards trait 
measurement, genetic evaluation 
methodology, and technologies aimed at 
enhancing reproductive performance. By 
ensuring a reliable measurement system and 
employing a more accurate genetic 
evaluation methodology, it becomes possible 

to effectively identify genetically superior 
animals, thereby enabling more accurate 
selection and ultimately achieving higher 
genetic gain (Goddard and Hayes, 2007). 
The availability of high-density SNP panel 
and the implementation of Genomic 
Selection (GS) present an exceptional 
opportunity to unravel the underlying 
genetic factors of complex traits. This is 
particularly advantageous for traits that are 
challenging or costly to measure, as well as 
those with low heritability (Meuwissen et 
al., 2001). Various studies have utilized the 
single-step Genomic Best Linear Unbiased 
Prediction (ssGBLUP) method to Estimate 
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Genomic Breeding Values (GEBV) for 
livestock (Salek Ardestani et al., 2021; 
Legarra et al., 2009). By combining the 
pedigree-based relationship matrix (A) with 
the Genomic relationship matrix (G) into a 
Hybrid matrix (H), ssGBLUP enhances the 
accuracy and minimizes the prediction bias 
of GEBVs compared to multi-step genomic 
predictions (Christensen et al., 2012; 
Simeone et al., 2012; Li et al., 2014; Song et 
al., 2017). 

In theory, the probability of finding 
Linkage Disequilibrium (LD) between 
Single Nucleotide Polymorphisms (SNPs) 
and Quantitative Trait Loci (QTL) is 
enhanced with the use of higher density SNP 
panels (Meuwissen et al., 2016). 
Nevertheless, the utilization of High Density 
(HD) SNP panels for constructing a G 
matrix has not resulted in substantial 
enhancements in the accuracy of the 
estimates (Misztal et al., 2013). Using a high 
density SNP panel can result in a significant 
statistical and computational problem. 
Additionally, the expense of genotyping 
animals with medium to high density SNP 
panels can be a burden in numerous 
livestock and poultry breeding programs. 
Therefore, employing preselection and 
utilizing a subset of SNPs may offer a 
practical solution that balances result 
accuracy, the number of independent 
variables to be taken into account, 
computing demands, and genotyping 
expenses (Meuwissen and Goddard, 2010; 
Druet et al., 2014).  

Although Average Daily Gain (ADG) is 
one of the main objective traits in poultry 
breeding due to their economic implications, 
the best age for conducting genomic 
evaluation for ADG has not been well 
determined. In the current study, we aimed 
to predict Genomic Breeding Values 
(GEBV) using ssGBLUP methodology for 
average daily gain at 2-4 weeks of age on a 
set of 488 F2 broiler chicken by using whole 
SNPs data and 5 different subsets of SNPs 
based on different MAF bins (0.05-0.1, 0.1-
0.2, 0.2-0.3, 0.3-0.4 and 0.4-0.5). Also, 

GEBVs were compared with BVs estimated 
from a traditional BLUP method.  

MATERIALS AND METHODS 

Experimental Population  

To investigate ADG traits at the age of 2-4 
weeks, the F1 population was generated by 
applying reciprocal crosses between a 
commercial fast-growing broiler strain 
(Arian line, A) and a slow-growing 
indigenous population (Urmia Iranian native 
chickens, N). Each F1 male, resulted from a 
reciprocal cross and, mated with four to 
eight females from the other families. 
Finally, 488 F2 chickens from eight half-sib 
families were generated in five different 
hatches. Day-old F2 chickens were initially 
weighed and raised on the floor for a 
duration of 7 days, with continuous exposure 
to 24-hour lighting and a brooding 
temperature of 33°C. However, on the 7th 
day, the temperature was reduced to 30°C. 
Subsequently, on the 8th day, the birds were 
weighed again and transferred to individual 
cages with a temperature of 30°C. Over 
time, the temperature gradually decreased 
until it reached a final temperature of 22°C. 
Additionally, throughout the entire 
experimental period, the chickens were 
subjected to a light and dark cycle of 22 and 
2 hours, respectively. 

Genotyping and Population S tructure 

DNA was extracted from 312 blood samples 
by the standard salting-out procedure. All 
samples were genotyped at Aarhus University, 
Denmark, using the Illumina Chicken 60K 
BeadChip provided by Cobb Vantress. Quality 
control was performed by using PLINK (v1.9) 
(Chang et al., 2015; Purcell et al., 2007). SNPs 
that had a Minor Allele Frequency (MAF) 
below 5% and a call rate below 95% were 
eliminated. Additionally, a Hardy-Weinberg 
equilibrium threshold of 1×10−6 was applied. 
Furthermore, samples with a high rate of 
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missing genotypes (< 99.9%) were excluded. 
Following the quality control process, the final 
dataset consisted of 48,379 SNPs and 308 
birds, comprising 170 males and 138 females. 
Numbers of SNPs before and after quality 
control, as well as the average distance 
between adjacent SNPs on each chromosome, 
determined using synbreed (Wimmer et al., 
2012), are shown in Table 1. The normality of 
the data after quality control was assessed and 
confirmed using a QQ-plot in R. In order to 
examine the correlation between allele 
frequencies and predictive abilities, a total of 
48,379 SNPs were divided into 5 subsets 
based on different MAF bins. These subsets 
included 6,731 SNPs in the 0.05-0.1 range, 
8,884 SNPs in the 0.1-0.2 range, 10,148 SNPs 
in the 0.2-0.3 range, 11,128 SNPs in the 0.3-
0.4 range, and 11,488 SNPs in the 0.4-0.5 
range. The software tools PLINK (v1.09) 
(Purcell et al., 2007) and GCTA (Yang et al., 
2013) were utilized for this analysis. The 
population structure was assessed through 
Multi-Dimensional Scaling (MDS) analysis 
using PLINK (v1.09) (Chang et al., 2015). To 
obtain independent SNPs for all autosomes, 
the independence-pairwise option was 
employed with a window size of 30 SNPs, a 
step of five SNPs, and an r2 threshold of 0.2, as 
recommended by Wang et al. (2009). Next, 
the pairwise Identity-By-State (IBS) 
relationship between all individuals was 
estimated using independent SNPs, as 
described by Liu et al. (2015). The MDS 
components were then obtained by utilizing 
the MDS-plot option, which was based on the 
IBS matrix as outlined by Sun et al. (2013). To 
perform cluster analysis on all genotypes, the 
neighbor joining method was employed, and 
agglomerative clustering was utilized based on 
genetic distance, following the approach 
described by Luo et al. (2020). 

Statistical Analyses 

The AIREMLF90 (v1.61) module from 
the Blupf90 program was utilized to predict 
the breeding values of each animal, 
employing Model 1 (Misztal et al., 2002): 

y = 1μ + Xb + Za + e    [1] 
Where, y is the vector of adjusted 

phenotype, μ is the overall mean, X is the 
incidence matrix relating fixed effects of 
sex–hatch–year to phenotypes, b is the 
vector of fixed effects, Z is the incidence 
matrix relating phenotypes to additive 
genetic effects, a is the vector of additive 
genetic effects assumed to be distributed 
as ∼ N (0,Aσa

2), where A is the pedigree-
based relationship matrix, σa

2 is the variance 
of additive genetic effects and e is the vector 
of random residual effects as ∼ N (0, Iσe

2), 
where I is the identity matrix, and σe

2 is the 
residual variance. Adjusted phenotypes were 
calculated as sum of the animals’ PBV and 
residual values (Lourenco et al., 2020). 
PBV’s and the residuals for each animal 
were estimated using AIREMLf90 and 
Pridictf90 modules from Blupf90 program 
by pedigree and raw phenotype fitting in 
model 1.  

The prediction of single-step genomic 
breeding values was carried out using Model 
2. AIREMLF90 (v1.61) (Misztal et al., 
2014) was employed for this purpose. The 
entire set of SNPs, consisting of 48,379 
SNPs, was utilized in the analysis. 
Additionally, five subsets of SNPs were 
created based on different Minor Allele 
Frequency (MAF) bins, namely 0.05–0.1, 
0.1–0.2, 0.2–0.3, 0.3–0.4, and 0.4–0.5. 

 y = 1μ + Xb + Zg + e   [2] 
Where, y, μ, X, b, and e are the same as 

Model 1, Z is a design matrix for the 
random additive genetic effects; g is a vector 
of random additive genetic effects assumed 
to be distributed as ∼N(0, H𝜎 ), where, H is 
a combination of Genomic relationship 
matrix (G) and pedigree-based relationship 
matrix (A). The H matrix inverse utilized in 
this research was formulated as follows: 

𝐻 =

𝐴 +  
0 0
0 𝑡(𝛼𝐺 + 𝛽𝐴 ) − 𝜔𝐴

  

[3] 
In the AIREMLF90 (v1.61) software 

(Misztal et al., 2014), A22 represents the 
subset of the A matrix that pertains to 
genotyped animals. The scaling factors, t  
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Table 1. Distribution of SNPs before and after quality control and the average distance between adjacent 
SNPs on each chromosome. 

Average distance (kb) No. of SNP in chip 
No. of SNP Markers 

after quality control 
Chromosome 

26.5 8303 7546 1 
26.7 6355 5762 2 
26.3 4739 4340 3 
26.5 3872 3553 4 
27.1 2542 2303 5 
19.6 1995 1815 6 
20.1 2089 1907 7 
20.1 1636 1502 8 
18.8 1366 1269 9 
16.1 1553 1378 10 
16.4 1531 1329 11 
14.4 1559 1356 12 
14.6 1371 1251 13 
14.3 1179 1081 14 
11.8 1222 1094 15 
21.7 24 20 16 
11.8 994 898 17 
11.9 1048 930 18 
11.3 973 878 19 
8.8 1815 1587 20 
8.5 901 805 21 

12.6 432 313 22 
9.3 724 631 23 
8.5 853 763 24 

11.5 211 177 25 
7.4 776 685 26 
9.4 576 518 27 
7.6 708 582 28 
7.7 142 118 29 
6.9 7 4 30 

37.5 2842 1984 Z 
15.8 54338 48379 Total 
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Cross Validations for Model Assessment 

In order to evaluate the predictive 
accuracy of various prediction models, the 
5-fold Cross-Validation (CV) method was 
employed. Among the total of 308 birds, a 
random selection of 40 birds was designated 
as the validation population, while the 
remaining 268 birds constituted the 
reference population. This process was 
repeated 5 times to ensure reliability. The 
estimation of GEBVs in the validation set 
was carried out using the ssGBLUP method. 
Additionally, traditional breeding values 
were estimated using the BLUP method for 
different age groups. The accuracy and bias 
of GEBVs/EBVs were utilized to compare 
the predictive performance of different 
scenarios.  

RESULTS 

Summary Statistics and Population 
Structure 

Table 2 presents the statistical measures of 
ADG, including the mean, standard 
deviation, coefficient of variation, and the 
minimum and maximum values, for weeks 2 
to 4. In order to investigate the genetic 
population structure, we conducted MDS 
analysis (Figure 1) and neighbour-joining 
tree analysis (Figure 2) using 48,379 SNPs 
in a crossbreed population. Our analysis 
identified the presence of eight distinct 
subgroups within the population under 
study.  

Predictive Ability 

The accuracy of EBV (GEBV) for ADG at 
2 to 4 weeks of age were 0.102 (0.104), 
0.155 (0.161) and 0.094 (0.096), 
respectively (Figure 3). The highest and 
lowest accuracy improvement in ssGBLUP 
over BLUP were observed for 3 (3.87%) and 
2 (1.96%) weeks of age, respectively. The 
lowest bias of genomic predictions (0.91) 
using ssGBLUP model was observed for 
ADG at 3 weeks of age (Table 3). 

Impact of MAF bins on predictive 
ability  

In order to assess the influence of MAF on 
predictive capability, we categorized SNPs 
into five distinct subgroups based on 
different MAF ranges: 0.05-0.1 (6,731 
SNPs), 0.1-0.2 (8,884 SNPs), 0.2-0.3 
(10,148 SNPs), 0.3-0.4 (11,128 SNPs), and 
0.4-0.5 (11,488 SNPs). For ADG at week 2, 
the highest accuracy (0.111, 0.105) was 
observed for MAF bins 0.3-0.4 and 0.4-0.5, 
which resulted in respectively, 6.86% and 
0.98% improvement compared to using all 
SNPs. The lowest bias of estimates (r= 0.81) 
was observed for MAF bin 0.4-0.5 (Table 
4). However, for ADG at 3 weeks of age, 
using MAF bin 0.4-0.5 resulted in the 
highest accuracy improvement (8.38%) and 
the lowest bias of estimates (r= 1.02) (Table 
5). For ADG at 4 weeks of age, MAF bins 
0.4-0.5 (0.108) and 0.3-0.4 (0.107) showed 
the highest accuracy of prediction, 
respectively. The regression coefficient of 
GEBVs predicted using this two MAF bins 
ranges between 1.32 to 1.56 (Table 6). The  

Table 2. Descriptive statistics of the Average Daily Gain (ADG) traits in chickens.a 

Trait/g Mean SD CV Min Max 
ADG2 18.03 6.64 36.80 0.864 30.90 
ADG3 28.70 7.82 27.23 7.460 58.92 
ADG4 38.70 10.71 27.67 5.813 72.95 

a ADG2 to ADG4= Average Daily Gain at 2 weeks of age to Average Daily Gain at 4 weeks of age 
based grams (g), SD= Standard Deviation, CV= Coefficient of Variation, Min= Minimum, Max= 
Maximum. 
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Figure 1. Population structure identification with multidimensional scaling analysis. Fullsib families are 

shown in the same color (HSF = half-sibling family). 

 
Figure 2. Genetic relationships among 8 chicken groups constructed using a neighbor-joining 

phylogenetic tree from shared allele distance, based on 48,379 single nucleotide polymorphisms (SNPs). 
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accuracy based on the SNPs with MAF bin 
0.3-0.4 and 0.4-0.5 across all traits was 
slightly increased relative to ssGBLUP (60k) 
(Figures 4, 5 and 6).  

DISCUSSION 

Developing an accurate and unbiased 
genomic prediction technique can prove to 
be a lucrative approach for genetic 
improvement of economic in the poultry 
sector (Mrode et al., 2019). Using a 
combination of pedigree and genomic 
information is expected to result in more 

accurate estimates of genetic merit 
compared to using pedigree information 
alone. In the current study, we employed the 
ssGBLUP technique to forecast the GEBVs 
for ADG traits during the 2 to 4-week age 
range. Subsequently, we compared the 
accuracy and bias of these predictions with 
estimates obtained through the conventional 
BLUP approach. Figure 3 demonstrates that 
ssGBLUP consistently outperforms the 
traditional BLUP method in terms of 
prediction accuracy across all age groups 
(Gao et al., 2012; Koivula et al., 2015). 
According to the findings of Silva et al. 

 
Figure 3. Comparison of BLUP and ssGBLUP accuracy in the second, third, and fourth weeks for the 

average daily gain (ADG) traits in F2 chickens. 

Table 3. Accuracy and bias of BLUP and ssGBLUP predictions for broiler average daily gain traits in 
different weeks using 5-fold cross-validation method. 

Regression coefficient / 
ssGBLUP 

Improvement accuracy% / 
ssGBLUP 

Accuracy / 
ssGBLUP 

Accuracy / 
BLUP 

Weeks 

0.75 1.96 0.104 ± 0.044 0.102 ± 0.044 2 
0.91 3.87 0.161 ± 0.044 0.155 ± 0.044 3 
1.5 2.12 0.096 ± 0.044 0.094 ± 0.044 4 

 
Table 4. Accuracy and bias of genomic prediction of average daily gain trait using different MAF bins at 

two weeks of age. 
Regression coefficient 

/ ssGBLUP 
Improvements for 

each MAF % 
Improvement 

accuracy% / ssGBLUP 
Accuracy / 
ssGBLUP 

MAF 

0.59 -37.25 -35.29 0.066 ± 0.045 0.05-0.1 
0.76 -4.9 -2.94 0.099 ± 0.044 0.1-0.2 
0.66 -9.8 -7.84 0.094 ± 0.044 0.2-0.3 
0.74 6.86 8.82 0.111 ± 0.044 0.3-0.4 
0.81 0.98 2.94 0.105 ± 0.044 0.4-0.5 

 
 

 [
 D

O
I:

 1
0.

22
03

4/
JA

ST
.2

6.
2.

29
9 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ja
st

.m
od

ar
es

.a
c.

ir
 o

n 
20

24
-0

5-
10

 ]
 

                             7 / 14

http://dx.doi.org/10.22034/JAST.26.2.299
https://jast.modares.ac.ir/article-23-62521-en.html


Table 5. Accuracy and bias of genomic prediction of average daily gain trait using different MAF bins at 
three weeks of age. 

Regression coefficient 
/ ssGBLUP 

Improvements for each 
MAF % 

Improvement accuracy 
% / ssGBLUP 

Accuracy / 
ssGBLUP 

MAF 

1.02 -5.16 -1.29 0.153 ± 0.044 0.05-0.1 
1.08 -0.65 3.22 0.160 ± 0.044 0.1-0.2 
0.89 -12.25 -8.38 0.142 ± 0.044 0.2-0.3 
0.85 1.93 5.80 0.164 ± 0.044 0.3-0.4 
1.02 8.38 12.25 0.174 ± 0.043 0.4-0.5 

 
Table 6. Accuracy and bias of genomic prediction of average daily gain using different MAF bins at four 
weeks of age. 

Regression 
coefficient / ssGBLUP 

Improvements for 
each MAF % 

Improvement 
accuracy% / ssGBLUP 

Accuracy / 
ssGBLUP 

MAF 

1.40 -31.9 -29.78 0.066 ± 0.045 
0.05-

0.1 
1.82 8.51 10.63 0.104 ± 0.044 0.1-0.2 
1.80 3.19 5.31 0.099 ± 0.044 0.2-0.3 
1.56 11.7 13.82 0.107 ± 0.044 0.3-0.4 
1.32 12.77 14.89 0.108 ± 0.044 0.4-0.5 
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Figure 4. Comparison of the accuracy of each MAF subgroup with the accuracy of information about all 
markers in the second week. 

 

Figure 5. Comparison of the accuracy of each MAF subgroup with the accuracy of information about all 
markers in the third week. 

 

 

Figure 6. Comparison of the accuracy of each MAF subgroup with the accuracy of information about all 
markers in the fourth week.
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accuracy for fat percentage using 
ssGBLUP compared to BLUP in a relatively 
small population of dairy cows with 
genotype information. In the current study, 
the enhancement in genomic prediction 
accuracy using ssGBLUP in comparison to 
BLUP was evident for the 3-week-old age 
group (3.87%). This improvement could be 
attributed to the higher genetic correlation 
observed between adjusted phenotypes and 
GEBVs as compared to EBVs for this 
specific age category. In general, a stronger 
genetic correlation between GEBVs and 
adjusted phenotypes leads to a higher level 
of accuracy in genomic prediction. The 
degree of genetic correlation between 
adjusted phenotype and EBVs for ADG at 3 
weeks of age were increased by be 0.006 
using ssGBLUP compared to BLUP method. 
However, small accuracy improvement was 
observed for ADG at 2 and 4 weeks of age, 
which could be due to the relatively small 
increase in genetic correlation between 
adjusted phenotypes and EBVs using 
ssGBLUP over BLUP (0.002 at 2 and 4 
weeks of age, respectively). Based on the 
current results, implementation of genomic 
evaluation based on ssGBLUP method using 
whole SNPs for ADG at 3 weeks of age can 
result in more accurate results in populations 
with similar structure. Our research has 
yielded valuable findings regarding the 
implementation of genomic selection using 
low-density markers in the F2 cross broiler 
population. While it is commonly believed 
that a large portion of genetic diversity can 
be accounted for by utilizing high-density 
panels, it should be noted that the majority 
of SNPs in these panels are in Linkage 
Disequilibrium (LD) with causal mutations. 
Therefore, increasing the number of markers 
may not necessarily lead to a significant 
improvement in the accuracy of genomic 
evaluation for populations with a single-
breed reference population (Su et al., 2012; 
Zhang et al., 2018). Additionally, the 
utilization of a high-density SNP panel may 
give rise to a significant statistical and 
computational concern. Furthermore, the 
genotyping of animals through medium to 

high-density SNP panels will incur 
substantial expenses in numerous livestock 
and poultry breeding initiatives. Therefore, 
employing preselection and utilizing a 
subset of SNPs can offer a satisfactory 
balance between result accuracy, the number 
of independent variables to be taken into 
account, computational demands, and 
genotyping expenses (Meuwissen and 
Goddard, 2010; MacLeod et al., 2014). In 
the present study, we constructed five 
subsets of SNPs based on different MAF 
bins for ADG at 2-4 weeks of age. The 
results showed that the use of SNPs with 
MAF bins 0.3-0.4 and 0.04-0.5 for ADG at 
2, 3 and 4 weeks of age, and SNPs with 
MAF bins 0.1-0.2 and 0.2-0.3 for ADG at 4 
weeks of age, can result in noticeable 
improvement of accuracy of prediction 
compared to using all SNPs (Figure 7). 
Consistent with our results, several studies 
showed that using the subset of SNPs can 
provide even better results than using of all 
SNPs information (Rolf et al., 2010; 
Wellmann et al., 2013; Ogawa et al., 2014; 
Li et al., 2018; Salvian et al., 2020).  

CONCLUSIONS 

In the current study, we investigated the 
accuracy and bias of genomic prediction 
across different age group, 2-4 weeks of age 
in the F2 broiler population using 5-fold 
cross-validation method based on the 
ssGBLUP method. Moreover, different 
subset of SNPs varying minor allele 
frequency were used for genomic 
predictions using ssGBLUP method. Given 
the level of regression coefficient and 
accuracy of genomic prediction, it seems 
that ADG at 3 weeks of age using whole 
SNPs or subset of SNPs with MAF bins 0.3-
0.4 and 0.4-0.5 could be used for future 
genomic prediction in broiler populations 
with population structure like the one used 
in the current study. Generally, SNPs with 
MAF bin 0.4-0.5 had higher predictive 
ability compared to other MAF bins for most 
of the age groups. However, one of the 
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limitations of the current study is that the 
small population size was used for genomic 
prediction and so further studies are needed 
to confirm the current results.  
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ارزیابی ژنومی صفت میانگین افزایش وزن روزانه در جمعیت حاصل از تلاقی لاین 
  های بومی ارومیه ایران آرین و جوجه

  اسدالهی، س. انصاري مهیاري، ر. واعظ ترشیزی، ح. عمراني و ع. احسانی .ح

  چکیده

محیطی مختلف، در صنعت طیور مورد توجه  اقتصادی و زیستبهبود ژنتیکی صفات رشد به دلیل پیامدهای 
وری است. علاوه بر این، یک پیش  ) یک راه عملی برای افزایش بهرهGPبینی ژنومی ( قرار گرفته است. پیش

خواهد بود. هدف از  GP)، گزینه معقولی برای سرعت بخشیدن به SNPsانتخاب از نشانگرهای ژنتیکی (
 هاي ) با استفاده از روشEBVهاي اصلاحي برآورد شده ( ت و اریبي مقادیر ارزشمطالعه اخیر مقایسه صح

BLUP ) مبتني بر شجرهBLUP و (BLUP مرحله ژنومي تك ) ايssGBLUP و همچنین تعیین بهترین سطح (
قطعه  ۴۸۸بود. در این مطالعه از رکوردهاي  ADGهاي ژنومي در صفت  از فراواني آللي براي انجام ارزیابي

هاي بومي کند رشد ارومیه ایران در سن  هاي سریع الرشد آرین و جوجه حاصل از تلاقي متقابل جوجه  F2رنده پ
تعیین ژنوتیپ  Illumina 60K chicken Beadchipها با استفاده از تراشه  هفتگي استفاده شد. نمونه ۴و  ۳، ۲

پس از عبور از مرحله کنترل کیفیت به پنج گروه با فراواني آللي مختلف  SNPنشانگر  ۴۸۳۷۹شدند. تعداد 
)MAF) (۱/۰-۰۵/۰ ،۲/۰ -۱/۰ ،۳/۰ -۲/۰ ،۴/۰-۳/۰  تقسیم شدند. نتایج ما برتری ۴/۰-۵/۰و (

ssGBLUP در مقایسه با BLUP  را تائید کرد. میانگین دقتGP  با استفاده ازssGBLUP  در مقایسه با
BLUP  برایADG درصد بهبود یافت. بسته به گروه  ۲.۱۲و  ۳.۸۷، ۱.۹۶هفتگی به ترتیب  ۲-۴نین در س

ها منجر به بهبود  SNPخاص در مقایسه با اطلاعات کل  MAFها با  SNPای از  سنی، استفاده از زیرمجموعه
للی ها بر اساس فراوانی آ  SNPانتخاب  شد. نتایج نشان داد، پیش ADGبرای صفت  GPقابل توجهی در دقت 

  ها و محاسبات فراهم کند. ممکن است شرایط مطلوبی در دقت ارزیابی
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